LABORATORY DIAGNOSIS OF TESTOSTERONE DEFICIENCY

Jacques Buvat MD, Lille, France
jacques@buvat.org

XVI th World Meeting of Sexual Medicine
Sao Paulo, 8-12 October 2014
Jacques Buvat: disclosure slide

- **Advisor:** Eli Lilly, Nextmed, Johnson et Johnson
- **Speaker:** Eli-Lilly, Janssen, Menarini, Nextmed,
- **Investigator:** Bayer, Boehringer-Ingelheim, Janssen, Lilly,
Definition of Testosterone Deficiency (TD)

Buvat et al 2013, ISSM recommendations

- Testosterone Deficiency is a clinical AND biochemical syndrome, frequently associated with age and co-morbidities, and characterized by a deficiency in testosterone and relevant symptoms.

- Low T may result from defects at various levels of the hypothalamus- pituitary- testes axis:
 - In the testes (primary TD)
 - At pituitary or hypothalamic level: secondary or tertiary TD

- TD may also result from an impairment of T action:
 - Decreased bioavailability of T, due to SHBG variations
 - Decreased sensitivity to T due to Andr. Receptor alterations
Laboratory Diagnosis is indicated in presence of symptoms, signs and conditions indicative of TD

Buvat et al 2013

<table>
<thead>
<tr>
<th>Most specific signs and symptoms</th>
<th>Less specific signs and symptoms</th>
<th>Most specific Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduced sexual desire and activity</td>
<td>Decreased energy, motivation, initiative</td>
<td>Type 2 diabetes mellitus</td>
</tr>
<tr>
<td>Decreased spontaneous erections</td>
<td>Retarded ejaculation</td>
<td>Metabolic syndrome</td>
</tr>
<tr>
<td>Erectile Dysfunction</td>
<td>Reduced muscle bulk and strength</td>
<td>Chronic obstructive lung disease, Sleep Apnea Syndrome</td>
</tr>
<tr>
<td>Hot flushes, sweats</td>
<td>Diminished physical or work performance</td>
<td>End-stage renal disease, hemodialysis</td>
</tr>
<tr>
<td>Waist circumference > 102 cm Increased BMI</td>
<td>Mild anemia (normocytic, normochromic)</td>
<td>Osteoporosis</td>
</tr>
<tr>
<td>Decreased testes size Varicocele</td>
<td>Depressed mood, irritability</td>
<td>HIV- associated weight loss</td>
</tr>
<tr>
<td>Loss of pubic hair, reduced requirement for shaving</td>
<td>Poor concentration and memory</td>
<td>History of infertility, cryptorchidism, pituitary disease, delayed puberty</td>
</tr>
<tr>
<td>Height loss, low trauma fractures, reduced BMD</td>
<td>Sleep disturbances, sleepiness</td>
<td>Treatment with opioids or glucocorticoids</td>
</tr>
</tbody>
</table>

But no indication for routine measurement of T
Methods to measure testosterone

<table>
<thead>
<tr>
<th>LABORATORY TEST</th>
<th>ADVANTAGES</th>
<th>DRAWBACKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total testosterone (TT):</td>
<td>Reference method</td>
<td>More expensive</td>
</tr>
<tr>
<td>Liquid chromatography/</td>
<td>Most accurate, especially for low values</td>
<td>Available in few laboratories (ref labs)</td>
</tr>
<tr>
<td>mass spectrometry (lcms)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Immunoassays: RIA</td>
<td>Less expensive</td>
<td>Less accurate, especially when TT in the low range</td>
</tr>
<tr>
<td>Chemiluminescence</td>
<td>More widely available</td>
<td></td>
</tr>
<tr>
<td>Free testosterone (FT):</td>
<td>Gold standard</td>
<td>Expensive, labor intensive, limited availability.</td>
</tr>
<tr>
<td>Equilibrium dialysis (ED)</td>
<td>Most accurate</td>
<td></td>
</tr>
<tr>
<td>Analogue immunoassay:</td>
<td>Less expensive</td>
<td>Not correlated with ED</td>
</tr>
<tr>
<td></td>
<td>Easily accessible</td>
<td>NOT RECOMMENDED</td>
</tr>
<tr>
<td>cFT: calculated with T and SHBG</td>
<td>Good correlation to equilibrium dialysis.</td>
<td>Need accurate TT (lcms) and SHBG. Right formula debated*</td>
</tr>
<tr>
<td></td>
<td>Less expensive</td>
<td></td>
</tr>
<tr>
<td>Bioavailable T (BT):</td>
<td>Measures 1-2% FT + 30-35% albumin-bound</td>
<td>Expensive, labor intensive, prone to errors.</td>
</tr>
<tr>
<td>Ammonium-sulf. precipit.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cBT: calculated with T and SHBG</td>
<td>Less expensive</td>
<td>Overrates the BT level</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NOT RECOMMENDED</td>
</tr>
</tbody>
</table>

* Ly et al 2010, Mazer 2010

J Buvat 2013
FREE TESTOSTERONE HYPOTHESIS

Free Testosterone:
= non protein-bound T
= sole bioactive part ??

Bioavailable Testosterone
= free + alb.-bound T
= non SHBG-bound T

The free hormone hypothesis may be a gross over simplification whose validity has not been established beyond a reasonable doubt (R Ekins, 1990, J Faix, 2013).

Today generally accepted, though no evidence of a better association of TD symptoms with FT compared with TT.
Clinical conditions and hormones variations that affect the SHBG circulating level, and hence the circulating fractions of T in men

<table>
<thead>
<tr>
<th>SHBG increase</th>
<th>SHBG decrease</th>
</tr>
</thead>
<tbody>
<tr>
<td>Free and bioavailable T decrease</td>
<td>Free and bioavailable T increase</td>
</tr>
<tr>
<td>Aging</td>
<td>Obesity</td>
</tr>
<tr>
<td>Hepatic diseases</td>
<td>Insulin resistance</td>
</tr>
<tr>
<td>Cirrhosis</td>
<td>Hyperinsulinism</td>
</tr>
<tr>
<td>Hyperthyroidism</td>
<td>Hypothyroidism</td>
</tr>
<tr>
<td>Estrogens</td>
<td>Androgens</td>
</tr>
<tr>
<td>Tamoxifen</td>
<td>Hyperprolactinemia</td>
</tr>
<tr>
<td>Anti-epileptic drugs</td>
<td>GH, Acromegaly</td>
</tr>
<tr>
<td></td>
<td>Corticosteroids, Hypercorticism</td>
</tr>
</tbody>
</table>

J Buvat 2013
Methods to measure testosterone

<table>
<thead>
<tr>
<th>LABORATORY TEST</th>
<th>ADVANTAGES</th>
<th>DRAWBACKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total testosterone (TT):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liquid chromatography/mass spectrometry (lcms)</td>
<td>Reference method</td>
<td>More expensive</td>
</tr>
<tr>
<td></td>
<td>Most accurate, especially for low values</td>
<td>Available in few laboratories (ref labs)</td>
</tr>
<tr>
<td>Immunoassays: RIA Chemiluminescence</td>
<td>Less expensive</td>
<td>Less accurate, especially when TT in the low range</td>
</tr>
<tr>
<td></td>
<td>More widely available</td>
<td></td>
</tr>
<tr>
<td>Free testosterone (FT):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equilibrium dialysis (ED)</td>
<td>Gold standard</td>
<td>Expensive, labor intensive, limited availability.</td>
</tr>
<tr>
<td></td>
<td>Most accurate</td>
<td></td>
</tr>
<tr>
<td>Analogue immunoassay:</td>
<td>Less expensive</td>
<td>Not correlated with ED NOT RECOMMENDED</td>
</tr>
<tr>
<td></td>
<td>Easily accessible</td>
<td></td>
</tr>
<tr>
<td>cFT: calculated with T and SHBG</td>
<td>Good correlation to equilibrium dialysis. Less expensive</td>
<td>Need accurate TT (lcms) and SHBG. Right formula debated*</td>
</tr>
<tr>
<td>Bioavailable T (BT):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ammonium-sulf. precipit.</td>
<td>Measures 1-2% FT + 30-35% albumin-bound</td>
<td>Expensive, labor intensive, prone to errors.</td>
</tr>
<tr>
<td>cBT: calculated with T and SHBG</td>
<td>Less expensive</td>
<td>Overrates the BT level NOT RECOMMENDED</td>
</tr>
</tbody>
</table>

* Ly et al 2010, Mazer 2010
Should LCMS replace immunoassays in routine practice?

(Fanelli et al 2013)

- Since the 90’s, major concerns about accuracy of IAs used in most routine labs, especially for low T concentrations
Variability of the results of TT measurements according to the immunometric platform (Morales 2012)

Results of TT measurement in the same serum sample provided to 1500 labs according to the 17 platforms supplied by 6 manufacturers that these labs were using (College of American Pathologists’ Ligand Special External Proficiency Testing Program)

T concentrations are generally consistent in the same manufacturer, but not across manufacturers, though population references ranges were similar.
Should LCMS replace immunoassays in routine practice?

(Fanelli et al 2013)

- LC has improved the practicability of MS, the Gold Standard technology, with respect to Gas Chromat.
- LCMS demonstrated its analytical superiority over immunometric platforms in the reference labs
- Reduces but does not eliminate interlab variations (Vesper et al 2009, Owen et al 2012, 2013, Rhea et al 2013), and requirement for control groups in each lab
- Requires also validation and more standardization
- Specific drawbacks: high initiation and maintenance costs, requirement of highly experimented staff
Comparison of Mass Spectrometry and Immunoassays in reference laboratories

- A validated IA platform is sufficient to differentiate hypo versus eugonadal males (Wang et al 2004, Huhtaniemi et al 2012), while not reliable in women and children.

- With respect to MS, T measured with IA provides clinically relevant info as concerns:
 - sexual desire, body composition, grip strength (Araujo et al 2013)
 - cardiometabolic risk factors (Haring et al 2013)
Liquid Chromatography Tandem Mass Spectrometry vs Immunoassay: conclusions

- LCMS is now the reference method which may allow a definitive standardization of T measurements and the generation of widely accepted reference intervals, hence a consensus on utility of biochemical testing.
- But presently not justified to substitute it to IAs for the diagnosis of hypogonadism in routine practice.
- Today the real issue is to improve the reliability of IAs:
 - by using LCMS to standardize the variety of IAs commercially available to routine clinical labs.
 - by obtaining from clinical labs implementation of published guidelines as concerns traceability and participation in external quality assessment programs.
Some reference values established with LCMS

<table>
<thead>
<tr>
<th>Author</th>
<th>Journal</th>
<th>Reference population</th>
<th>Mean total T + SD (ng/ml)</th>
<th>2.5th percentile</th>
<th>Mean FT + SD (pg/ml)</th>
<th>2.5th percentile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bhasin</td>
<td>JCEM 2011</td>
<td>456 healthy men <40 y</td>
<td>7.23 ± 2.2</td>
<td>3.48 ng/ml</td>
<td>141.8 ± 45</td>
<td>70 pg/ml</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12 nmol/l</td>
<td></td>
<td>242 pmol/l</td>
</tr>
<tr>
<td>Yeap</td>
<td>JCEM2012</td>
<td>394 healthy older men</td>
<td>4.06 ± 1.38</td>
<td>1.84 ng/ml</td>
<td>56.8 ± 29.9</td>
<td>14.7 pg/ml</td>
</tr>
<tr>
<td></td>
<td></td>
<td>76.1±5.2 y</td>
<td></td>
<td>6.4 nmol/l</td>
<td></td>
<td>103 pmol/l</td>
</tr>
</tbody>
</table>
Should we measure TT or FT?

- No evidence supports an advantage to measure FT rather than TT. Based on theoretical grounds.
- Very few doctors have access to equilibrium dialysis.
- Analogue FT assay not recommended.
- Calculated FT or BT may seem a convenient issue. In fact it is a complicated way for non endocrinologists.
 - Requires going to internet to find a calculator.
 - Issue of the units (nmol or ng, /ml, dl or l).
 - No reference range.
- Scientific validity of cFT and cBT debated.

J Buvat 2014
Controversies around using cFT or cBT

- Criticisms against Vermeulen’s formula for cFT
 - Albumin variations disregarded: but little impact (Guay et al 2013)
 - Erroneous constants used in the equation?
 - 4 other equations proposed, resulting in slight changes in the FT level (Ho et al 2006, Ly et al 2010, Guay et al 2013)
 - SHBG polymorphisms may affect binding affinity (Ohlsson et al 2011)

- Prevalent opinion: FT is a supplementary method. Not to be used alone
Comparison of methods for assessing T concentration (Araujo et al, ENDO 2013)

Comparison of 7 methods for assessing T

- CI Chemiluminescence IA
- LCMS Liquid chromatography tandem mass spectrometry
- Bioavailable T by ammonium sulfate precipitation (BAT)
- Calculated BT with CI
- Calculated FT with CI & LCMS
- Bioactive assay

For their ability to predict 4 androgen-sensit. endpoints

- Isometric grip strength
- Lean mass & fat mass
- Hematocrit
- Sexual Desire Inventory

In 795 randomly selected men 35-80 y
Comparison of methods for assessing T:

CONCLUSIONS *(Araujo et al, ENDO 2013)*

- Correlations of T with androgen sensitive end-points vary by age and by obesity
- In their reference center IA and LCMS performed similarly
- Consideration of SHBG aids interpretation, particularly in older or obese men
- But calculation of FT confers no additional useful information:
 - cFT had the lowest correlation with androgen-sensitive EPs
 - Was no more informative in older or obese patients
At what time of the day should we measure T?

- Early morning preferable in young men due to T nycthemeral variation. Later gives falsely low results.
 - Several retrospective studies with clear limitations give inconsistent results:
 - No influence of draw-time on mean TT values till 02pm (Crawford et al 2007, Guay et al 2008, Welliver et al 2014), then decrease by about 13% (Crawford et al 2007).
 - Decrease of mean FT and BT end morning compared with early morning (Guay et al 2008).
 - 1 prospective study: At any age 50% of men with a low TT in the afternoon have normal values in the morning (Brambilla et al 2009, small series).

- At any age, morning is preferable, especially for FT/BT.

J Buvat 2014
Should we measure Dihydrotestosterone or Dehydroepiandrosterone (DHEA)?

- No

- Serum DHT levels do not reflect the DHT production within the target tissues, which is the most important

- No benefit of supplementation with DHEA in controlled studies
Does measuring serum LH add to the diagnosis of TD?

- **Yes in men with a low or borderline TT at a first measurement: high or high normal LH:**
 - Definitely confirms hypogonadism, and its primary (testicular) origin, thus to be treated with testosterone itself

- **Probably no in association to the 1st T measurement:**
 - « subclinical », or « compensated hypogonadism » (high LH + normal T)
 - is prevalent in older men (9.5% after 40, 21% in 70-79 years old, Tajar et al 2011, EMAS)
 - Is associated with \uparrow likelihood of physical but not sexual symptoms (Tajar et al 2011)
 - May be a forerunner of overt primary hypogonadism
 - But no available evidence data on efficacy and safety of T therapy (Tajar et al 2011, Gianetti et al 2013)
Is CAG repeat testing necessary for the best management of TD?

- Serum T level only partly reflects the androgenic status: polymorphisms of the AR gene, especially the number of CAG repeats in exon 1 modulate its transcriptional activity (Zitzmann 2009)
 - This may be determined by PCR then automatic DNA sequencing
 - The longer the CAG repeats’ length, the lower the AR efficiency, causing significant decreases of androgenicity in eugonadal men and of efficacy of T therapy in certain studies
 - This may at least partly account for the interindividual variability of the sensitivity to T
Associations of CAG repeat polymorphism with clinical features linked to TD (Francomano et al, 2013)
Is CAG repeat testing necessary for the best management of TD? *(Francomano et al 2013)*

- In some men TD symptoms might result from ↑ length of CAG repeats, despite only borderline T levels

- ↑CAG repeat length predicts incident low T *(Haring 2011)*

- But investigationnal studies’ results are inconsistent

- May be due in part to a compensatory ↑ in T (and E2) *(Lapauw 2008, Huthaniemi 2009, Travison 2010)*

- Knowledge still too preliminary and inconsistent to support a diagnostic interest at this stage. May become important in a near future. A role in future management of T therapy is also probable
Strategy for the laboratory diagnosis of Testosterone Deficiency (Grade C)

- In patients suspected of TD, these investigations are recommended:
 - Morning serum sample for Total Testosterone (TT) determination.
 - In case of a low level it is recommended:
 - to repeat the TT determination (LOE3)
 - together with serum LH, and prolactin measurements (LOE1)
 - and in case of only moderately low or borderline TT, SHBG if alterations of its circulating level are suspected (especially in obese or older men) (LOE3).
Results’ interpretation

- **Repeat T measurement:** if first T result moderately low, repeat testosterone is normal in 1/3 cases. *(Buvat et al 2013)*

- **Serum LH:**
 - Elevated: primary/testicular TD
 - Elevated + normal or borderline T: subclinical TD, may be symptomatic. *(Ucak et al 2013)*
 - Low or normal: secondary TD. Possibility of modifiable causes [hyperprolactinemia (HPRL) or hemochromatosis]
 - Very low LH and T: think to pituitary tumor, even if normal PRL

- **Serum prolactin (PRL):**
 - HPRL classical cause of TD. LSD & ED may be revealing sympt
 - In men, pituitary tumor in 50% of non iatrogenic severe HPRLs
 - MRI if PRL ≥ 35 ng/ml

- **T:** what is a low testosterone level??
What is a low testosterone level?
Using one or several threshold levels?

- Endocrine Society: threshold # 3 ng/ml, 11.4 nmol/l
- Does not take into account the variability of the sensitivity to circulating T:
 - Interindivdual variability (Kelleher et al 2004)
 - Variability according to the symptom: different T thresholds for different tissues and symptoms (Gray et al 2005, Zitzmann et al 2006, Wu et al 2010)
 - Variability according to age (tends to ↓) (Gray et al 2005)
 - Interlaboratory variability of the results (Sikaris et al 2005, Morales 2012)
 - Variability of sensitivity of the AR (Zitzmann et al 2008)
- Difficult to propose only one cut-off value which could not integrate all these individual variations
Threshold levels for the laboratory diagnosis of TD (Grade B)

- There are no generally accepted lower limits of normal TT. However, there is general agreement that:
 - TT > 12 nmol/l (3.5 ng/ml) does not usually require substitution (LOE1)
 - Based on the data of young hypogonadal men, men with TT < 8 nmol/l (2.3 ng/ml) usually benefit from T treatment (LOE1)
 - Between these levels:
 - Measuring SHBG levels may be helpful. Referral to an endocrinologist may be of help in case of substantially abnormal level
 - A trial of testosterone therapy may be envisaged for 6-12 months in those patients who are symptomatic, while alternative causes of the symptoms have been excluded (LOE2)
 Beyond that time, T therapy would be continued only in case of substantial benefit (LOE2)
We have now evidence of beneficial effects of T therapy in men with TT between 8 and 12 nmol/l

<table>
<thead>
<tr>
<th>Study Journal</th>
<th>Formulation</th>
<th>Duration</th>
<th>Mean T * nmol/l</th>
<th>Significantly improved parameter, p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allan, 2008, IJIR**</td>
<td>Patches</td>
<td>12 months</td>
<td>13.6/13.5</td>
<td>IIEF sexual desire score, +1.18/pl group, p=0.04</td>
</tr>
<tr>
<td>Srinivar-Shankar 2010, JCEM</td>
<td>Gel</td>
<td>6 months</td>
<td>10.9/11</td>
<td>Isometric knee extension torque, p=0.02</td>
</tr>
<tr>
<td>Giltay, 2010, JSM</td>
<td>Nebido</td>
<td>30 weeks</td>
<td>8 + 4</td>
<td>IIEF 5: +3.1/pl group, p<0.001</td>
</tr>
<tr>
<td>Hackett, 2013, JSM</td>
<td>Nebido</td>
<td>30 weeks</td>
<td>9.2/8.9</td>
<td>IIEF EFD score: +2.82, p<0.001</td>
</tr>
<tr>
<td>Hackett, 2014, IJCP, mild group</td>
<td>Nebido</td>
<td>30 weeks</td>
<td>8-12</td>
<td>Waist circumf.: -3.5 cm, HADS, both <0.001, HbA1c : -0.24 p=0.03, CT: -0.23, p=0.02</td>
</tr>
</tbody>
</table>

* Mean TT at baseline, active/placebo groups, ** high drop-out rate
The trial of T therapy: a simple clinical diagnostic test in symptomatic patients

- In men with TT between 8 and 12 nmol/l (2.3-3.5 ng/ml, 230-350 ng/dl)
- Exclude contraindications
- Objective assessment of signs and symptoms (weight, WC, metabolic tests, AMS, IIEF)
- After initiation of T therapy control that the targeted T level has been achieved
- Follow-up every 3 or 6 months with the same tests
- After 6 to 12 months, T therapy would be continued only in case of substantial benefit
Algorithm for diagnosis and management of testosterone deficiency (TD)

Erectile Dysfunction, Low Sexual Desire, or other potential symptoms or signs of TD

Measure am total Testosterone (TT)
If Low Sexual Desire add Prolactin (PRL)

First TT > 12 nmol/L (3.5ng/ml): No TD. Seek other causes

TT < 12 nmol/L (3.5 ng/ml): Low or borderline
Repeat TT + LH, PRL + SHBG

Second TT < 12 nmol/L
Confirmation of moderate or severe TD
High LH Primary TD
Low/normal LH Secondary TD
TT < 8 nmol/l Severe TD Check MRI
T therapy

High PRL: Look for drugs & repeat PRL
PRL < 35 ng/ml
2nd PRL > 35 ng/ml not drug-induced

TTT: trial of T therapy
Normal results: DA-agonist therapy
Persisting low T despite normal PRL, or resistance of HPRL to DA-agonists
Refer to endocrinologist

Normal LH
Third TT + SHBG
TT < 12 nmol/ml
TT > 12 nmol/l
Normal SHBG
Abnormal SHBG

DA: dopamine
HPRL: hyperprolactinemia
MRI: pituitary MRI
PRL: prolactin
TTT: trial of T therapy

J Buvat 2014